Control Strategies with Dynamic Threshold Adjustment for Supercapacitor Energy Storage System Considering the Train and Substation Characteristics in Urban Rail Transit
نویسندگان
چکیده
Abstract: Recuperation of braking energy offers great potential for reducing energy consumption in urban rail transit systems. The present paper develops a new control strategy with variable threshold for wayside energy storage systems (ESSs), which uses the supercapacitor as the energy storage device. First, the paper analyzes the braking curve of the train and the V-I characteristics of the substation. Then, the current-voltage dual-loop control method is used for ESSs. Next, in order to achieve the best energy-saving effect, the paper discusses the selection principle of the charge and discharge threshold. This paper proposes a control strategy for wayside supercapacitors integrated with dynamic threshold adjustment control on the basis of avoiding the onboard braking chopper’s operation. The proposed control strategy is very useful for obtaining good performance, while not wasting any energy in the braking resistor. Therefore, the control strategy has been verified through simulations, and experimental tests, have been implemented on the Batong Line of Beijing subway using the 200 kW wayside supercapacitor energy storage prototype. The experimental results show that the proposed control is capable of saving energy and considerably reducing energy consumption in the braking resistor during train braking.
منابع مشابه
Optimal design of onboard energy storage systems with volume limitation for urban electrical rail transportation
Train braking energy regeneration in urban electrical rail transportation systems can reduce energy consumption and operational cost of the system. In this paper, optimal design of an onboard energy storage system (OESS) with volume constraint is presented for urban electrical rail transportation systems (ERTS). Onboard super-capacitors are considered as the storage system. The objective functi...
متن کاملDemand-oriented timetable design for urban rail transit under stochastic demand
In the context of public transportation system, improving the service quality and robustness through minimizing the average passengers waiting time is a real challenge. This study provides robust stochastic programming models for train timetabling problem in urban rail transit systems. The objective is minimization of the weighted summation of the expected cost of passenger waiting time, its va...
متن کاملFundamental Diagram of Rail Transit and Its Application to Dynamic Assignment
Urban rail transit often operates with high service frequencies to serve heavy passenger demand during rush hours. Such operations can be delayed by train congestion, passenger congestion, and the interaction of the two. Delays are problematic for many transit systems, as they become amplified by this interactive feedback. However, there are no tractable models to describe transit systems with ...
متن کاملVibration of Train-Rail-Bridge Interaction Considering Rail Irregularity with Arbitrary Wavelength
A generation method for the rail random irregularity with arbitrary wavelength interval (WI) is developed, and its accuracy and efficiency are demonstrated. Then a moving wheel-rail-bridge interaction element is derived to establish the finite element equations of motion for the train-rail-bridge interaction system, and the flow chart of assembly and calculation for the system equations is give...
متن کاملSupercapacitor State Based Control and Optimization for Multiple Energy Storage Devices Considering Current Balance in Urban Rail Transit
The use of supercapacitors (SCs) to store regenerative braking energy from urban rail trains is able to achieve a good energy saving effect. This paper analyzes the current balance method of stationary energy storage devices (ESDs). At the beginning of the paper, the mathematical model of the DC traction power system, which includes trains, ESDs and traction substations, is established. Next, b...
متن کامل